Analysis: Unterschied zwischen den Versionen

Aus Wiki des Arbeitskreises MSS (Landau)
Wechseln zu: Navigation, Suche
(Kern der Integralrechnung)
(Kern der Integralrechnung)
Zeile 25: Zeile 25:
 
rect 185 88 288 138  [[Analysis/Einstieg_(Anker)_Integralrechnung|Einstieg (Anker)]]
 
rect 185 88 288 138  [[Analysis/Einstieg_(Anker)_Integralrechnung|Einstieg (Anker)]]
 
rect 313 90 416 138  [[Analysis/Rekonstruktion des Bestandes]]
 
rect 313 90 416 138  [[Analysis/Rekonstruktion des Bestandes]]
rect 442 90 546 138  [[Analysis/Tangentensteigung|Tangentensteigung]]
+
rect 442 90 546 138  [[Analysis/Flächendeutung]]
 
rect 54 165 547 212  [[Analysis/Zusammenfassung|Zusammenfassung: Ableitungsbegriff, Ableitungsfunktion]]
 
rect 54 165 547 212  [[Analysis/Zusammenfassung|Zusammenfassung: Ableitungsbegriff, Ableitungsfunktion]]
 
rect 55 238 286 288  [[Analysis/Vernetzung|Vernetzung von Kalkül und Grundvorstellungen]]
 
rect 55 238 286 288  [[Analysis/Vernetzung|Vernetzung von Kalkül und Grundvorstellungen]]

Version vom 20. Juni 2017, 19:45 Uhr

Kern der Differentialrechnung

Die grauen Bausteine stellen einen möglichen grundvorstellungsorientierten Unterrichtsgang durch die Differentialrechnung dar. Ausgehend von der "momentanen Änderungsrate" werden zwei weitere Grundvorstellungen erarbeitet und miteinander vernetzt.

In der folgenden Grafik sind alle Bausteine anklickbar.


BasiswisssenEinstieg (Anker)ÄnderungsrateTangentensteigungZusammenfassung: Ableitungsbegriff, AbleitungsfunktionVernetzung von Kalkül und GrundvorstellungenVom Anker zum TransferGrundvorstellungen zur DifferentilarechnungKernDerDifferentialrechnung-3.jpg
Über dieses Bild


Kern der Integralrechnung

Basiswissen_IntegralEinstieg (Anker)Analysis/Rekonstruktion des BestandesAnalysis/FlächendeutungZusammenfassung: Ableitungsbegriff, AbleitungsfunktionVernetzung von Kalkül und GrundvorstellungenVom Anker zum TransferGrundvorstellungen zur DifferentilarechnungKdI.png
Über dieses Bild


Dieses Werk von der AK MSS der Universität Landau ist lizenziert unter einer Creative Commons Namensnennung - Nicht-kommerziell - Weitergabe unter gleichen Bedingungen 4.0 International Lizenz. CC BY NC SA